
Lecture 03 - C language basics (last updated: 2024-09-17)

The C programming language greatly influenced languages that came after it,
including C++, Java, Go, Javascript, Python, and Rust. A lot of C language
features may seem familiar or even obvious for those who have programmed in
other languages.

This lecture note will assume you already know one of those aforementioned
languages (primarily Java) and focus on:

 - features where C may differ from those languages
 - features not as frequently used in those languages
 - other C quirks that you should be aware of

Integral data types in C

C types tell you precisely how much memory a variable of that type occupies.
C has the following primitive data types, whose sizes are such that:

 char <= short <= int <= long <= long long

The C standard does not specify the byte sizes of these types! On most systems:

 - char: 1 byte
 - short: 2 bytes
 - int: 4 bytes
 - long: 8 bytes on 64-bit UNIX systems (such as CLAC);
 4 bytes on most 32-bit systems and 64-bit Windows
 - long long: 8 bytes

When you define a variable of a certain type:

 int x;

You are saying, "the variable x takes up 4 bytes."

When you declare a variable of a certain type:

 extern int x;

You are saying, "the variable x is defined elsewhere with 4 bytes."

sizeof

Use the sizeof operator to obtain the size of a type:

 printf("size of long: %lu\n", sizeof(long));

Or the size of the type of an expression:

 long i;

 printf("size of i: %lu\n", sizeof(i));

 printf("size of some arithmetic: %lu\n", sizeof(i + 2));

Some quirks about sizeof:

 - sizeof isn’t a function---it just looks like one! sizeof is an operator.
 - The sizeof of any type is known at compile time.
 - sizeof does not evaluate its argument:

 int foo(void) {
 printf("foo() was called\n"); // never printed
 }

 ...

 printf("size of foo’s return type: %lu\n", sizeof(foo()));

 - You can write sizeof without parentheses when the argument is an expression:

 long i;

 printf("size of i: %lu\n", sizeof i); // also ok, but bad style

Binary, octal, decimal, hexadecimal

We normally read, write, and think about numbers in base 10 (decimal), but
machines compute and store numbers in base 2 (binary). So in C code, when we
write "6" or "11", we are actually expressing the bit values 110 and 1011.

C also lets us write numbers in octal and hexadecimal notation, whose digits
neatly map to binary digits. Octal notation begins with ’0’, whereas
hexadecimal begins with ’0x’.

 when we write... ...the machine sees
 octal decimal hex binary

 00 0 0x0 0000
 01 1 0x1 0001
 02 2 0x2 0010
 03 3 0x3 0011

 04 4 0x4 0100
 05 5 0x5 0101
 06 6 0x6 0110
 07 7 0x7 0111

 010 8 0x8 1000
 011 9 0x9 1001
 012 10 0xa 1010
 013 11 0xb 1011

 014 12 0xc 1100
 015 13 0xd 1101
 016 14 0xe 1110
 017 15 0xf 1111

C writing tip: use decimal when expressing numerical values (e.g., for
arithmetic); use hexadecimal for expressing bit values; octal is rarely used.

Q. How many hex digits do we need to represent all possible char values?

A. 2 hex digits. Reasoning:

 A char is 1 byte = 8 bits, so there are 2^8 = 256 possible char values.
 A single hex digit can represent 16 possible values (0-15 inclusive);
 two hex digits can represent 16 * 16 = 256 possible values.

Q. How many hex digits do we need to represent all possible int values?

A. 8 hex digits. Reasoning:

 An int is 4 bytes = 32 bits, so there are 2^32 = lots of possible values.
 We previously saw that 2 digits were sufficient for 1 byte (i.e., a char),
 so 4 * 2 = 8 digits for 4 bytes.

Signed vs. unsigned integers

Each integral type can be used in two flavors: signed or unsigned. For example,
for the 4-byte ’int’ type:

 int x; // possible values go from -2^31 to +2^31 - 1

 unsigned int x; // possible values go from 0 to +2^32 - 1

That is, the unsigned flavor of integral types let you double the range of
positive values at the expense of negative values.

The binary representation of positive values is straightforward. How, then, do
we represent negative numbers in binary?

We use two’s complement encoding to represent n-bit signed numbers as follows:

 - Most significant bit (MSB) represents sign; 0 is positive, 1 is negative
 - When the MSB is 1, subtract 2^(n-1) from the lower n-1 bits to obtain
 the encoded value; in other words, assign negative weight to the MSB
 - There is an asymmetry: there is one more negative number
 - To negate a number, flip all of its bits and binary-add 1;
 equivalent to binary-subtracting the number from 2^n

Some important numbers at the boundaries:

 Hex description decimal
 --
 0x00....00 zero 0
 0xFF....FF negative one -1
 0x7F....FF the largest positive number 2^(n-1) - 1
 0x80....00 the lowest negative number -2^(n-1)

In C, conversions between signed and unsigned values preserve bit patterns:

 int main()
 {
 char c = -1;
 unsigned char uc = c; // force a conversion from negative to unsigned
 int i = uc; // i will keep the value of uc because int is much bigger
 printf("%d\n", i); // prints 255
 }

Integer literals

Here are some examples of integer variable declarations to show different ways
of writing integer literals:

 int i = 0xffffffff; // i is -1

 unsigned int i = 0xffffffff; // i is 4294967295

 int i = ’A’; // i is 65, the ASCII code for the character A

 int i = ’\n’; // i is 10, the ASCII code for the newline character

 int i = ’\11’; // i is 9 because backslash followed by up to 3 octal digits
 // in single quotes evaluates to an octal number

 int i = ’\0’; // so this is 0
 int i = 0 ; // so is this (obviously)
 int i = ’0’; // but this is 48, the ASCII code for the character 0

Other C types

If you need to ensure byte sizes, #include <stdint.h> to use intN_t (signed)
and uintN_t (unsigned), defined in the C99 standard, e.g.,:

 - int8_t: 8-bit (1-byte) signed integer
 - uint8_t: 8-bit (1-byte) unsigned integer
 - uint32_t: 32-bit (4-byte) unsigned integer
 - int64_t: 64-bit (8-byte) signed integer

Floating point numbers: float is 4 bytes and double is 8 bytes.

 float x = 123.4f; // ’f’ suffix for floating point literals of type float
 double y = 123.4;

Arrays and pointers are central to C programming. For example, there is no
String type in C. Strings are represented using arrays of char ending with 0. We
will cover them soon!

In C, any non-zero integer values are considered "true", and only zero is
considered "false". In the following if-statement, for example, f(x) will be
called when x is any value other than 0 -- like 5, -37, 1000 -- and g(x) will be
called only when x is 0:

 if (x)
 f(x);
 else
 g(x);

C99 introduced the boolean type "_Bool" that can hold only the values 0 or 1,
and defined "bool", "true", "false" as synonyms for _Bool, 1, 0, respectively,
in a standard header file, stdbool.h. C23 finally added bool, true, and false as
keywords in C.

Most C programmers, however, still use int rather than bool.

Expressions vs statements

Expressions are things in the C language that always evaluate to a value;
statements do not. For example, the following are expressions:

 42 // evaluates to 42
 x // evaluates to the contents of variable x
 1 + 6 // evaluates to 7
 foo() // evaluates to the return value of calling foo()
 a == b // evaluates to 1 if a and b are equal, 0 otherwise
 b ? 42 : 66 // evaluates to 42 if b is non-zero; 66 otherwise

Meanwhile, statements may contain expressions, but do not evalaute to a value
themselves. For example, these are all statements:

 return 1 + 6;
 break;
 while (x) { f(); }
 if (b) return 42; else return 66;

One way to think about this distinction is the fact that you can only assign
values; so this makes sense:

 x = 1 + 6; // assign the value 5 to the variable

But this does not (and is a syntax error):

 x = return 1 + 6; // ??

Bitwise vs logical operators

Operators are built-in operations we can perform on expressions; most are
binary, i.e., take two arguments. For example, +, *, and - are examples of
arithmetic operators, while >, ==, and >= are comparison operators. Some
operators are unary, i.e., only take one argument: for example, sizeof (which
we’ve seen before) and - (as in when you write -3).

C has two sets of operators that look similar and behave similarly: logical
operators and bitwise operators. They are:

 && logical AND
 || logical OR
 ! logical NOT

and:

 & bitwise AND
 | bitwise OR
 ~ bitwise NOT
 ^ bitwise XOR

(Note that there is no logical XOR.)

The difference is that the logical operators only consider whether their
operands are zero or non-zero; bitwise operators operate on a per-bit level.

C also includes two bit-shift operators, which shift the bits in their left
operand by the amount specified in the right operand:

 - <<: bitwise shift left
 - >>: bitwise shift right

For example, 5 << 2 shifts the bits in 5 to the left by 2 positions, producing
the value 20:

 00000000 00000000 00000000 00000101
 / / << 2
 00000000 00000000 00000000 00010100

Bits "shifted out" the end of a number are discarded:

 00000000 00000000 00000000 00000101
 \ >> 2
 00000000 00000000 00000000 00000001

When left-shifting, bits "shifted in" from the right are always 0. When
right-shifting, bits shifted in from the left are 0 if the MSB is 0. If
right-shifting and MSB is 1, then bits shifted in from the left depend on the
type of the integer being shifted:

 - If an unsigned integer is being shifted, 0-bits are shifted in.

 - If a signed integer is being shifted, which means that it’s a negative
 number (because the MSB is 1), the C language leaves the behavior
 undefined, so the compiler is free to shift in either 0-bits or 1-bits.

Thus, the only case where 1-bits are shifted in is when right-shifting a signed
integer holding a negative number, and the compiler implements shifting in
1-bits rather than 0-bits in that case. Most modern compilers do in fact
implement that behavior. This is called "sign extension" because it has the
effect of preserving the sign of a signed integer -- i.e., a negative number
will stay negative after right-shifting. Here is an example:

 10000000 00000000 00000000 00000101
 \ \ >> 2
 11100000 00000000 00000000 00000001

Short-circuit evaluation

An important characteristic of logical operators is that they "short-circuit"
their evaluation process in the middle if the remaining part of the expression
will not change the result. Consider the following example:

 // assume x == 0 at this point

 if (x > 0 && f(x)) {

 // code continues

Since x is equal to 0, and the value of whole expression will be false no matter
what f(x) returns, the evaluation of the logical AND expression will terminate
after it was determined that x > 0 is false. This means that the function f()
will not even be called. This can matter if f() produces side-effects -- like

printing something for example.

The same applies to the logical OR operator -- if the left-hand side is true,
the right-hand side is not evaluated.

Assignments as expressions

One peculiar thing about C is that an assignment is an expression. This
syntactic feature allows us to write this:

 x = y = 3;

Which should be read as:

 x = (y = 3);

The value of an assignment expression is the right hand side of the assignment,
i.e., what is being assigned; so when we write x = y = 3, both x and y are
assigned the value 3.

This quirk also allows us to write:

 if (err = f())
 // do something...

instead of:

 err = f();

 if (err)
 // do something...

However, since = is often mistaken for ==, we conventionally add additional
parentheses to make our intent clear:

 if ((err = f()))
 // do something...

Compound assignment and increment/decrement expressions

C also provides shorthand for common assignment patterns:

 When we write... C treats that as...

 x += y x = x + y
 x *= y x = x * y
 x &= y x = x & y
 x <<= y x = x << y

C also provides prefix and postfix increment and decrement operators:

 Prefix Postfix

 Increment ++x x++
 Decrement --x x--

The value of a prefix increment/decrement is the value of x after
incrementing/decrementing; the value of postfix increment/decrement is the value
of x before incrementing/decrementing:

 assert(x == 0);
 y = x++;
 assert(y == 0);
 z = ++x;
 assert(z == 2);

Undefined behavior

C allows you to write things that are nonsensical. For example, consider this:

 x = x++;

What should the value of x be after the assignment?

And what about:

 x = x++ + ++x;

Instead of painstakingly over-specifying what the behavior should be, the
C standard simply leaves the behavior "undefined." Undefined behavior means
that the behavior of such statements is beyond the scope of well-behaved
C programs. For example, the compiled program may assign an arbitrary value to
your variables, or even crash or run forever.

The ambiguity of undefined behavior often gives compilers the flexibility to
generate more efficient compiled code. Some compilers can warn you about some
forms of undefined behavior. For example, GCC will warn you about x = x++ if
you use -Wall. However, other instances of undefined behavior cannot be known
at compile-time. For example, signed integer overflow is undefined.

