
Lecture 02 - Separate Compilation and Make (last updated: 2024-01-20)

--

C is a compiled language, meaning we cannot run it directly; we must first

compile C code to an executable file before running the executable file.

Compilers translate code that you write into machine code that computer hardware

can run. They provide several benefits for programmers:

 - Portability: the same source code can be compiled for different hardware

 - Readability: source code is easier for humans to read, maintain, and write

 - Safety: compilers can prevent errors, e.g., by catching scope or type errors

Here is an example of compiling and running a hello world C program:

 $ cat hello.c # show contents of hello world program

 #include <stdio.h>

 int main(int argc, char **argv) {

 printf("%s\n", "Hello, world!");

 return 0;

 }

 $ gcc hello.c # compile and link hello world...

 $ ls # ...creating an executable file named a.out

 a.out hello.c

 $./a.out # execute a.out

 Hello, world!

Note that for historical reasons, the default executable name is a.out. We will

later see how to customize the executable name.

Separate compilation

Compilers are complex pieces of software that require lots of computing power.

Old computers took a long time to compile large software projects, so

compilation was broken down into "compilation units" that could be compiled

incrementally and independently. Each compilation unit is compiled into an

"object file"; object files are linked together to produce an executable file.

 compilation object executable

 units files file

 foo.c -- CC --> foo.o ---+

 bar.c -- CC --> bar.o -- LD --> a.out

 baz.c -- CC --> baz.o ---+

CC in the diagram indicates the command used to invoke the C compiler and LD

indicates the command for the linker. In our environment, gcc is the command for

both. Note that the linking step no longer assumes the C language. In fact,

separate compilation allows programmers to link object files compiled from

different languages.

In the example below, we first use gcc to compile (but not link) hello.c, using

the -c flag:

 $ gcc -c hello.c # compile hello.c...

 $ ls # ...producing hello.o

 hello.c hello.o

And then we link the hello.o object file:

 $ gcc hello.o # link hello.o...

 $ ls # ...producing a.out

 a.out hello.c hello.o

Note that we must link hello.o even if it is the only object file in the

executable; object files are not executable on their own.

Useful compiler flags

When we invoke GCC, we may specify additional flags to customize its behavior.

For instance, we may compile with the following flags:

 $ gcc -g -Wall -c -o hello.o hello.c

Here is what they do:

 - -g: include debugging info (which we will use later in the course)

 - -Wall: enable all warnings (useful for catching bugs)

 - -c: compilation only

 - -o hello.o: use hello.o as the output filename

These flags may be passed to gcc in any order. -o hello.o is not actually

necessary since it just specifies the default object filename, but it is good

practice to specify the output filename explicitly.

We can also use the -o flag when linking, to set the output filename to hello

instead of a.out:

 $ gcc -o hello hello.o # link hello.o...

 $ ls # ...producing hello

 hello hello.c hello.o

Linkers and symbols

The linker (ld) links together object files, which define symbols. Symbols are

the names of functions and global variables shared between compilation units.

When an object file uses a symbol defined in another compilation unit, it leaves

a placeholder for that symbol.

The linker’s job is to fill each symbol placeholder with a reference to that

symbol’s single definition.

Consider mymod.c, which defines the symbol "mod":

 // mymod.c

 // Define the "mod" symbol

 int mod(int x, int y) {

 return x % y;

 }

Now consider myprogram.c, which defines the symbol "main":

 // myprogram.c

 // Define the "main" symbol

 int main(void) {

 return mod(4, 2);

 }

When we compile myprogram.c to produce myprogram.o as follows,

 $ gcc -g -Wall -c -o myprogram.o myprogram.c

myprogram.o will contain a placeholder for the symbol "mod". The symbol "mod"

was used in myprogram.o -- the main() function called mod() function -- and the

symbol "mod" was defined in another object file, mymod.o. The linker will

resolve the placeholder with the definition at link time:

 $ gcc myprogram.o mymod.o -o myprogram

By the way, if you had compiled myprogram.c shown above, you would have gotten a

warning from the compiler like this:

 warning: implicit declaration of function ’mod’

The C language requires that a function be either fully defined or at least

declared before it is called. A function can be declared by writing its

prototype as follows:

 // myprogram.c

 // Declare (but not define) the mod() function

 int mod(int x, int y);

 // Define the "main" symbol

 int main(void) {

 return mod(4, 2);

 }

A function declaration (aka prototype or signature) is therefore the return

type, the function name, and the parameter types, followed by a semicolon.

The "extern" keyword is implicit for function declarations; the following

declarations are equivalent:

 int mod(int x, int y);

 extern int mod(int x, int y);

In summary, the linker has three responsibilities:

 - ensure that all symbols are defined at most once

 - ensure that there are no missing definitions

 - ensure that the "main" symbol is defined

Headers and #include

If multiple C files contain a call to a function add(), for example, manually

adding the add() function’s prototype at the top of all the files that use it

would be not only cumbersome, but also error-prone.

Header files help us solve this problem. Conventionally, they end with a ".h"

extension, and contain any number of declarations that we wish to share between

compilation units. For example, consider the header file myadd.h:

 // myadd.h

 int add(int x, int y);

This header file ensures that the same declaration of "add" is seen by every

compilation unit. We use a C preprocessor directive, #include, to copy the

contents of myadd.h into compilation units that use "add", e.g., this version of

myprogram.c:

 // myprogram.c

 #include "myadd.h" // Copy in the textual contents of myadd.h

 int mod(int x, int y);

 int main(void) {

 return mod(add(2, 2), 2);

 }

Note that #include (and other C preprocessor directives, which begin with "#")

perform purely textual modifications to .c files. We could have replicated the

behavior of #include "myadd.h" by manually pasting in the contents of myadd.h.

Standard C Library

Consider the following version of myprogram.c:

 // myprogram.c

 #include "myadd.h" // myadd.h is searched in the current directory

 #include <stdio.h> // stdio.h is searched in the system directory

 int main(void) {

 printf("%d\n", add(2, 3));

 return 0;

 }

The content of stdio.h, which gets copied into myprogram.c when it gets

compiled, will contain the prototype of the printf() function. The stdio.h file

collects the prototypes of input & output related functions (among other things)

defined in a set of pre-installed object files called the Standard C Library.

It is important to note that stdio.h file does NOT contain the definition of the

printf() function. It only contains the declaration. The definition of the

function is found in an object file belonging to the Standard C Library, which

gets automatically linked in by the linker, without you having to specify the

object file name in the linking command.

Function types

Object files only record the name, but not the type, of each symbol they

contain. For functions, this means that only their names are recorded, not their

parameter and return types.

Consider linking myprogram.c above (in the Standard C Library section) with the

following new version of myadd.c with a modified definition of add() that takes

three parameters:

 // myadd.c

 int add(int x, int y, int z) {

 return x + y + z;

 }

Each file compiles independently without warning. And you can link myprogram.o

and myadd.o without any warning as well. But when we run the executable, it will

produce unpredictable results. (Try it!)

We can fix it by adding #include "myadd.h" into myadd.c as well:

 // myadd.c

 #include "myadd.h"

 int add(int x, int y, int z) {

 return x + y + z;

 }

Now the compiler will complain when it sees that the type of the declaration

does not agree with the definition.

Make

Because myprogram.o is produced by compiling myprogram.c, we say that

myprogram.o depends on myprogram.c. Similarly, because myprogram is produced by

linking myprogram.o, myadd.o, and mymod.o, we say that it depends on those

object files.

We should only need to rebuild something if one of the files it depends on has

changed; after all, part of the reason for separate compilation is to avoid the

cost of rebuilding things we do not need to rebuild.

Make is a build system that helps us manage incremental builds. You can find

its manual online here: https://www.gnu.org/software/make/manual/make.html

Make runs commands for you according to instructions specified in a Makefile.

For example, it can help you run any of the GCC build commands shown above. A

Makefile should specify one or more "rules" for building files; each rule looks

like this:

 myprogram: foo.o bar.o baz.o

 gcc -o myprogram foo.o bar.o baz.o

where:

 - myprogram is the name of the "target," i.e., the file this rule will build

 - foo.o, bar.o, and baz.o are the "prerequisites" that the target depends on

 - gcc <etc.> is the "recipe," i.e., the shell command that builds the target

Make uses the "last modified" timestamp of each file to figure out if a target

needs to be rebuilt. Make will rebuild a target if it doesn’t exist, or if it

was last modified earlier than one of its prerequisites.

Putting it all together

myadd.h:

 #ifndef _MYADD_H_

 #define _MYADD_H_

 int add(int x, int y);

 #endif

myadd.c:

 #include "myadd.h"

 int add(int x, int y) {

 return x + y;

 }

mymod.c:

 int mod(int x, int y) {

 return x % y;

 }

myprogram.c:

 #include <stdio.h>

 #include "myadd.h"

 int mod(int x, int y);

 int main() {

 printf("add(3, 4) returned: %d\n", add(3, 4));

 printf("mod(17, 5) returned: %d\n", mod(17, 5));

 return 0;

 }

Makefile

 myprogram: myprogram.o myadd.o mymod.o

 gcc myprogram.o myadd.o mymod.o -o myprogram

 myprogram.o: myprogram.c myadd.h

 gcc -c -o myprogram.o myprogram.c

 myadd.o: myadd.c myadd.h

 gcc -c -o myadd.o myadd.c

 mymod.o: mymod.c

 gcc -c -o mymod.o mymod.c

myprogram.c and myadd.c both #include the myadd.h header file, so the object

files they compile to both depend on the myadd.h. That is, if, we modify

myadd.h, we should update myprogram.o and myadd.o to make sure they are compiled

with our latest modifications to myadd.h.

Here is the output of make:

 $ make

 gcc -c -o myprogram.o myprogram.c

 gcc -c -o myadd.o myadd.c

 gcc -c -o mymod.o mymod.c

 gcc myprogram.o myadd.o mymod.o -o myprogram

Make prints out the commands that it runs. Run ls to confirm that these

commands successfully produced myprogram.o, myadd.o, mymod.o, and myprogram.

Note that Make builds myprogram because that is the first target in the

Makefile; it builds myprogram.o, myadd.o, and mymod.o because they are

dependencies of myprogram.

If you run make again, it won’t do anything, since the timestamp of myprogram is

later than its dependencies (the .o files).

 $ make

 make: ’myprogram’ is up to date.

We can use the touch command (man touch) to update the timestamp of a dependency

and trick Make into rebuilding myprogram:

 $ touch myadd.c # update time stamp of myadd.c

 $ make

 gcc -c -o myadd.o myadd.c

 gcc myprogram.o myadd.o mymod.o -o myprogram

Sample Makefile

Make includes all sorts of useful features like variables, implicit rules, and

phony targets. Here is the same Makefile for myprogram, but with a ton of

comments explaining the essential features of Make.

This Makefile should be used as a template for future Makefiles.

It’s heavily commented, so hopefully you can understand what each line does.

Makefiles allow us to define variables that can be expanded elsewhere.

#

Some variables, like CC, CFLAGS, LDFLAGS, and LDLIBS, are used to customize

the behavior of Make’s built-in rules.

Set CC to gcc to use gcc as our C compiler

CC = gcc

Compilation options:

-g: include debugging info symbols

-Wall: enable all warnings

CFLAGS = -g -Wall

Linking options:

LDFLAGS =

List the libraries you need to link with in LDLIBS.

For example, use -lm for the math library.

LDLIBS =

The first target gets built when you run make.

It’s usually your executable (myprogram in this case).

#

Note that we did not specify the linking recipe.

Instead, we rely on one of Make’s implicit rules:

#

$(CC) $(LDFLAGS) <dependent-.o-files> $(LDLIBS) -o <executable-name>

#

myprogram: myprogram.o myadd.o mymod.o

myprogram.o depends not only on myprogram.c, but also on myadd.h, which it

includes. myprogram.o will be recompiled if it has an earlier timestamp than

any of its dependencies.

#

Make uses the following implicit rule to compile a .c file into a .o file:

#

$(CC) -c $(CFLAGS) -o <target-.o-file> <the-.c-file>

#

Make’s implicit rule assumes myprogram.o depends on myprogram.c, so we can

omit myprogram.c in the dependency list if we want to.

myprogram.o: myprogram.c myadd.h

myadd.o depends on myadd.c and myadd.h.

myadd.o: myadd.c myadd.h

mymod.o depends on mymod.c.

mymod.o: mymod.c

Always provide the "clean" target that removes build artifacts (e.g., the

target executable and .o files) and other garbage that may be created during

the development process.

#

The "clean" target does not correspond to a filename, so we tell Make that

it’s a "phony" target, meaning it does not need to check the timestamp of

a file called "clean".

.PHONY: clean

clean:

 rm -f *.o a.out core myprogram

The "all" target can be useful if your Makefile builds multiple programs.

Here we’ll have it first do "clean", and rebuild the myprogram target.

#

Like "clean", we declare it as a phony target because it doesn’t actually

build a file named "all".

#

Dependencies are built in the order they are declared, left to right.

.PHONY: all

all: clean myprogram

