Lecture 16 - UNIX (last updated: 2023-11-12)

An operating system (0OS) kernel is the software "between" the computer hardware
and the other software running on it. The following diagram illustrates their
role in modern software system stacks:

Applications: ls, vim, gcc, bash, chrome, firefox, mdb-lookup-cs3157

Library functions: printf (), strcpy(), malloc (), fwrite() |

System calls: write(), fork(), execl ()

0OS kernel: Linux, XNU (of macOS), Windows NT

Hardware: processor (CPU), memory (RAM), disk, GPU, keyboard

With the help of CPU hardware features such as privileged operations and
periodic timer interrupts, modern OS kernels provide each user program with a
virtual environment where they can run as though:

- they have exclusive use of the CPU
— they have exclusive use of large linear memory address space
— hardware devices from different vendors respond to a uniform set of commands

The kernel is only one part of an 0S, which also consists of libraries and
various application programs. Windows and macOS come bundled with many
application programs. Strictly speaking, "Linux" is the kernel of the GNU/Linux
Operating System, where the GNU part refers to the rest —-- libraries and
application programs —-- that are actually a much bigger part of a usable
operating system.

In 1970, Ken Thompson and Dennis Ritchie at AT&T Bell Labs developed the UNIX
operating system, along with the C programming language for the purpose of

writing UNIX. Since then, many descendants of UNIX have come and gone from
AT&T, and other companies and universities who licensed UNIX and developed their
own versions. They include AT&T’s System V, UC Berkeley’s BSD and its many

descendants, Sun’s Solaris, IBM’s AIX, HP’s HP-UX, and Microsoft’s Xenix.

Five decades later, there are three descendants of UNIX that are still going
strong. GNU/Linux, which combines the Linux kernel created by Linus Torvalds in
1991 with an extensive collection of free software from GNU Project, is the
dominant OS for servers today. macOS, the 0S for Apple’s Mac computers, is the
second most widely used desktop OS after Microsoft Windows. Lastly, FreeBSD is
the most widely used BSD descendant. While its popularity is tiny compared to
Linux or macOS, FreeBSD is significant because it forms the basis of other OSes.
First and foremost, FreeBSD is a part of macOS and the reason why macOS is
considered to be a UNIX system. FreeBSD also forms the basis of the 0OSes for
some prominent hardware devices including Internet routers and game consoles.
Even Microsoft used FreeBSD’s networking code in its Windows OS.

The UNIX-like interface common to these operating systems is codified in a
standard called "POSIX", which stands for Portable Operating System Interface.
We use the name "UNIX" to broadly refer to UNIX-like systems, i.e., those that
conform to the POSIX standard.

Users and groups

In UNIX, all users have a unique username and user ID (UID). Users also belong
to one or more groups, identified by a unique group name and group ID (GID).

You can use the "id" command to find your UID and group membership:

$ id
uid=1488 (abcl234) gid=1008(student) groups=1008 (student)

The output shows that the username is abcl234, UID is 1488, and the user is part
of the student group.

UNIX systems also have a superuser whose username is root and whose UID is 0.

File permissions

Each file is associated with a user, a group, and a set of permissions. The
file’s associated user is also called the file’s "owner", the group is called
the file’s "group owner", and the permissions are called the file’s "mode".

You can see this metadata using 1ls -1:

$ 1s -1

—rw——————— 1 abcl234 student 12 Oct 31 01:34 private.txt
—-rw-r——-r—— 1 abcl234 student 17 Oct 31 00:54 public.txt
—rwxr-x—-—-— 1 abcl234 student 211 Oct 31 01:03 script.sh

| | | |

| | | file name

| | group

| user

permissions

Each permission is written here as a 1l0-character string, which have the
following meaning (with spaces added for clarity):

r w X r - X - - -
A AAAAAAAAA AAAAAAAAA AAAAAAAAA

| | |
| Other permissions
|

Group permissions

|
|
|
|
User permissions

r-r if a file, 'd’ if a directory

These are sometimes referred to as "owner," "group," and "world" permissions.

Whether a particular user can access a file is determined by their identity and
group membership, relative to these permissions. The user permissions only
apply when the file owner is trying to access the file; otherwise, the group
permissions apply when the user trying to access the file is a member of the
file’s group; otherwise, the other permissions are used.

For each of the user, group, and other permissions, the three characters (a
triad) indicate whether they can be read (r), written (w), and executed (x);
a '—' indicates that the owner/group member/other user does not have that
permission. So, of the files shown above:

- private.txt can only be read and modified by abcl234

- public.txt can be be read by anyone, but can only be modified by abcl234

— script.sh can be read, modified, executed by abcl234; can be read and
executed by anyone in the student group; but others have no access

These restrictions do not apply to the superuser, root. The root user can do
anything they want.

Permissions triads are often expressed as octal numbers, where the read, write,
and execute permissions each correspond to a binary digit with the wvalue 1 when
set and 0 otherwise.
So, the files above have the following permissions, in octal notation:

- private.txt: 600

- public.txt: 644

- script.sh: 750

The three octal digits represent the user, group, and other permissions of each
file.

You can change the permissions, owner, and group of a file (or directory) using
the chmod, chown, chgrp commands, e.g.:

$ chmod 755 student.sh # Change script.sh’s mode to 755
$ chown root public.txt # Change public.txt’s owner to root

We passed a mode in octal notation to the chmod command above. We can also pass
modes in symbolic notation:

$ chmod go-x student.sh

"go-x" tells chmod to turn off the execute permission for group and other. If
the permission was rwxr-xr-x (755) to begin with, it will become rwxr—--r--

(744) . The following command will turn the x permission back on only for group:
$ chmod g+x student.sh # The mode will become rwxr—-xr—— (754)
And the following will turn on the x permission for "all" (i.e., user, group,

and other):
$ chmod a+x student.sh # The mode will become rwxr-xr-x (755)
Be careful when using these commands! You can lock yourself out of your own

files (or even your entire system) if you incorrectly configure permissions; in
that case, you will need help from the root user to reclaim access.

Directory permissions

In UNIX, directories have permissions too:

$ 1s -la

drwxr-xr-x 2 abcl234 student 5 Oct 31 01:34

drwx—-—-x——— 21 abcl234 student 43 Oct 31 01:34 ..
—rW——————— 1 abcl234 student 12 Oct 31 01:34 private.txt
—-rw-r——r—— 1 abcl234 student 17 Oct 31 00:54 public.txt
—rwxr—-x——— 1 abcl234 student 211 Oct 31 01:03 script.sh

For directories, the permissions are interpreted a little differently:

— The read permission (r) allows the corresponding users to "read" the content
of the directory —-- i.e., you can run "1ls". (But "ls -1" requires the
execute permission.)

— The write permission (w), together with the execute permission, allows the
corresponding users to modify the content of the directory -- i.e., you can
create, delete, or name files. The write permission for directory is
meaningless without the execute permission.

— The execute permission (x) is the prerequisite for full access to the items
within the directory —-- displaying metadata with "ls -1" and modifying the
content of the directory, combined with r and w, respectively.

The execute permission is also needed to enter or get past a directory. For
example, in order to run "cd a/b/c/d", one needs the execute permissions for
a, b, ¢, and d.

Shell scripts

A shell script is a text file that contains a list of commands for a shell
program to execute one after another. If you want to execute "1ls" three times,
for example, you can create a file "1ls3.sh" that contains the following lines:

#!/bin/bash
1s
1s
1s

You can run a shell script by passing it as an argument to the shell program:
$ /bin/bash 1s3.sh

You will see the 1ls command run three times. The first line is treated as a
comment because it starts with ’"#’. (The line is actually a bit more special
than that; more on this below.)

Most shells not only let you run individual commands, but also offers its own
programming language. For example, you can write 1s3.sh this way:

#!/bin/bash
for i in {1..3}
do

1s
done

UNIX provides another way to run a shell script. You can run the script itself
by typing "./1s3.sh" instead of "/bin/bash 1s3.sh". When the kernel is given a
program file to execute (through the execv()/execl () system calls as we
studied), it will look at the first two bytes of the program file to determine
the format of the executable. If the first two bytes are ’'#’ and ’!’, it is
recognized as the "interpreter directive". In that case, UNIX will execute the
program that the interpreter directive specifies instead —-- "/bin/bash" in this
case —— and pass the original script file (1ls3.sh) as a command line argument.
The end result is the same as running "/bin/bash 1s3.sh". The interpreter
directive is commonly referred to as the "shebang" line.

Before this can happen, the shell script must be made executable using the chmod
command:

chmod +x 1s3.sh

setuid, setgid, and sticky bits (optional)

UNIX file permissions also include another triad of bits, named the setuid,
setgid, and sticky bits. Though they are used less frequently than the user,
group, and world permission triads, they provide more fine-grained access
control that is very useful for enforcing particular security policies.

The setuid bit allows a user to execute a file as the file owner. For example:
$ cd /home/jae/cs3157-pub/bin

$ 1s -1 *-cs3157

-rwsr—-xr-x 1 jae jae 17416 Oct 18 15:18 mdb-add-cs3157
-rw-r—-r—-— 1 jae jae 38200 Oct 31 14:44 mdb-cs3157
—-rwxr—-xr—-x 1 Jjae jae 158 Oct 18 15:18 mdb-lookup-cs3157

mdb-cs3157 has 644 permissions, so while anyone can read it, only the owner,
jae, can modify it. Recall that mdb-cs3157 was the class database for lab4.
Everyone in class was able to add entries to this class-wide database by running
mdb-add-cs3157. Normally, when a user abcl234 runs a program, say
mdb-lookup-cs3157, the program carries the identity of the user who is running
it, and the UID of the user running the program will be subject to the
permission checks. So when the user abcl234 runs mdb-lookup-cs3157 to read
mdb-cs3157, the user is able to see the content of the database because
mdb-cs3157 allows read access to everyone. But if abcl234 were to open
mdb-cs3157 using vim, for example, abcl234 won’t be able to modify the database
file because mdb-cs3157 allows write access only to its owner, jae.

How, then, was every student in class able to add records into mdb-cs3157 using
mdb—-add-cs3157? Notice that instead of ’'rwx’, mdb-add-cs3157’s owner
permissions are 'rws’; the ’s’ here indicates that the setuid bit is also set,
meaning when other users execute mdb-add-cs3157, they will do so as jae,
granting them sufficient privileges to modify mdb-cs3157. Since mdb-add-cs3157
is carefully written to only open the mdb-cs3157 file, a malicious user cannot
use mdb-add-cs3157’s setuid bit to misuse jae’s privileges.

The setgid bit works similarly for executable files, except it allows the user
to run as though they were a member of the file’s group. When the setgid is set
for directories, it causes files and subdirectories created in that directory to
inherit its group ownership, which is convenient for groups of collaborators who
are all creating files in that directory.

The sticky bit is only useful for directories; it prevents users with write and
execute permissions from modifying or deleting directory contents that they do
not own. This bit is primarily useful for shared directories like /tmp, which
anyone can add files to; the sticky bit, indicated by the ’"t’ in the directory
permissions, prevents users from tampering with each other’s files in /tmp:

$ 1s -d -1 /tmp # —-d prevents ls from listing /tmp’s contents
drwxrwxrwt 56 root root 28672 Oct 31 16:52 /tmp

File creation permissions and umask (optional)

It’s very easy to accidentally grant too many permissions to newly created
files; for example, in C, files created with fopen() are created with 666
permissions by default. At first glance, this seems wildly insecure: other
users would be able to read and write all files created with fopen()!

To prevent lapses in security, UNIX applies a "umask" to newly created files.
A umask is a triple of permissions used as a bitmask on the permissions of
these files. For example, a umask of 022 ensures that files will be created
without group and world write permissions; a umask of 077 ensures that files
will start inaccessible by group members and other users.

You can get and set your umask using your shell’s umask command:

$ umask 077 # set umask to 077

$ touch filel # create a new file with umask 077
$ umask 022 # set umask to 022

$ touch file2 # create a new file with umask 022
$ umask 000 # set umask to 000 (very insecure!)
S touch file3 # create a new file with umask 000
$ 1s -1

—rw——————-— 1 abcl234 student 0 Oct 31 17:41 filel

-rw—r——r—— 1 abcl234 student 0 Oct 31 17:42 file2
-rw-rw—-rw— 1 abcl234 student 0 Oct 31 17:45 file3

By default, the touch command tries to create new files with 666 permissions.
With a umask 077, the resulting permission is 666 & ~077 = 600; with umask 022,
666 & ~022 = 600; with umask 000, 666 & ~000 = 666.

Note that umask only governs the permissions that a file is created with; the
permissions can always be set to something else afterwards, e.g., using chmod.

