
Lecture 12 - Standard I/O (last updated: 2023-10-16)

Programs rely on the operating system to communicate with their environment
(i.e., other programs, your terminal, the file system etc.). These channels of
communication are known broadly as I/O (input/output). In this lecture, we will
discuss the mechanism by which programs communicate with you in the command
line.

The C standard provides every running program with 3 I/O streams: standard input
(stdin), standard output (stdout), and standard error (stderr). C programs use
these communication channels to print output to the command line, and to receive
typed input while they are running.

stdin, stdout, and stderr are sometimes referred to numerically as 0, 1, and 2,
respectively. These are their file descriptor numbers, which we will revisit in
a later lecture.

Standard output (stdout)

Most of the time, when you see a program’s output on the command line, that is
the text it has printed to stdout:

 $ echo "hello" # writes argument "hello" to stdout
 hello

C programs can write formatted text to stdout using the printf() function:

 $ cat printf-test.c
 #include <stdio.h>

 int main(void) {
 printf("This is printed to stdout.\n");
 return 0;
 }

 $ gcc -o printf-test printf-test.c

 $./printf-test
 This is printed to stdout.

There are also other ways to write to stdout, including putchar() ("put
character") and puts() ("put string"), though printf() is usually used in their
place.

printf(), putchar(), and puts(), are all functions provided by the C standard
library, and tell the operating system to write to stdout.

Standard input (stdin)

The "opposite" of printf() is scanf(), which reads input from stdin according
to some input format:

 $ cat scanf-test.c
 #include <stdio.h>

 int main(void) {
 int x;
 printf("Enter a number on the next line.\n");
 scanf("%d", &x);
 printf("Your number was %d.\n", x);
 return 0;
 }

 $ gcc -o scanf-test scanf-test.c

 $./scanf-test
 Enter a number on the next line.
 56
 Your number was 56.

The shell session shown here is actually a little misleading; the lines saying
"Enter a number on the next line." and "Your number was 56." represent the
program’s stdout, printed using printf(). The line consisting of "56" is what
I typed into the terminal; it is only shown here because the terminal leaves
what I typed on the screen. The only characters that appeared in the program’s
stdin were ’5’, ’6’, and ’\n’ (when I hit the return key).

scanf() is not used nearly as often as printf(), since its interface can be
awkward to use (the fixed format does not handle arbitrary user input well).
The stdin counterparts to putchar() and puts() are getchar() and gets(); while
getchar() is sometimes useful for reading in a single character from stdin,
gets() should never be used (see its man page). For this course, we prefer to
use the functions fgets() and fread() (we will talk about these next lecture).

By the way, do not confuse stdin with a program’s arguments: the arguments are
typed in BEFORE the program is executed, and are given to the program via argv;
stdin is typed in WHILE the program is running, and is retrieved using I/O
functions such as scanf(), getchar(), fgets(), and fread() (all provided by the
C standard library).

Redirection

You can use the shell to redirect I/O streams. For example, you can redirect
the stdout of echo to a file, using the ">" shell operator:

 $ echo hello > myfile # redirect "hello" to myfile

 $ cat myfile # show contents of myfile
 hello

You can do the same with printf-test from before:

 $./printf-test > myfile # redirect program’s stdout to myfile

 $ cat myfile # old contents were overwritten
 This is printed to stdout.

If you would like to append to a file instead of overwriting its contents, you
can use the ">>" shell operator:

 $ echo "more text" >> myfile # append program’s stdout to myfile

 $ cat myfile
 This is printed to stdout.
 more text

You can redirect from a file to a program’s stdin, using the "<" shell operator:

 $ echo "42" > anotherfile # write "42" to anotherfile

 $./scanf-test < anotherfile # read "42" from another file
 Enter a number on the next line.
 Your number was 42.

Note that "42" does not appear in the shell session, since we didn’t type it in
this time.

Pipes

You can also use the shell to "pipe" (i.e., connect) the stdout of one program
to the stdin of another, using the "|" operator. For example:

 $ echo "36" | ./scanf-test # send "36" to the stdin of scanf-test
 Enter a number on the next line.
 Your number was 36.

Pipes are really useful for automating text-processing tasks. For example,
here’s how I count the number of lines in all of my lecture notes (so far):

 $ ls *.txt # list all the lecture notes in pwd
 01-cli-basics.txt 04-bytes.txt 07-arrays.txt
 02-git.txt 05-pointers.txt 08-structs.txt
 03-compile.txt 06-heap.txt 09-libraries.txt

 $ cat *.txt | wc -l # count the number of lines
 2483

Here’s what’s going on:

 - cat *.txt: concatenates the contents of all .txt files in the pwd, and
 outputs those contents to stdout

 - wc -l: counts the number of lines given to stdin, and outputs the final
 count in its stdout

You can even chain pipes together, and use them with redirection. For example,
here I write each unique word in my notes to a text file named "lecture-words":

 $ cat *.txt | tr ’ ’ ’\n’ | sort | uniq > lecture-words

Breaking it down (though you don’t need to understand every command):

 - cat *.txt: concatenates the contents of all .txt files in the pwd, and
 outputs those contents to stdout

 - tr ’ ’ ’\n’: reads from stdin, translates each space to a newline, and
 writes it to stdout (i.e., puts every space-separated word on its own line)

 - sort: sorts lines from stdin in alphabetical order, and outputs to stdout

 - uniq > lecture-words: omit repeated lines, i.e., the repeated words from my
 lecture notes; stdout is redirected to a file named lecture-words

Now I can count how many unique words I have using wc -l:

 $ wc -l < lecture-words
 3189

Standard error (stderr)

Since stdout is often redirected or piped to another file or process, printing
errors on stdout can be problematic. Thus, UNIX also provides a second output
stream, stderr, separate from stdout. You can write to stderr using the
standard library function fprintf(), which works exactly like printf(), except
it takes an additional first argument indicating which I/O stream to print to:

 $ cat fprintf-test.c
 #include <stdio.h>

 int main(int argc, char **argv) {
 if (argc < 2)
 fprintf(stderr, "Warning: no arguments given.\n");
 else
 fprintf(stderr, "%d arguments given.\n", argc - 1);

 for (int i = 1; i < argc; i++)
 fprintf(stdout, "%s\n", argv[i]);
 // ^same as writing printf("%s\n", argv[i]);

 return 0;
 }

 $ gcc -o fprintf-test fprintf-test.c

 $./fprintf-test
 Warning: no arguments given.

 $./fprintf-test hello world
 2 arguments given.
 hello
 world

It looks as if "Warning: no arguments given." and "2 arguments given." are
printed to stdout, but they are actually printed to stderr. This distinction
becomes clear when we redirect stdout (but not stderr):

 $./fprintf-test hello world > myfile
 2 arguments given.

If we would like to redirect stderr, we can use "2>" (2 is the file descriptor
number for stderr):

 $./fprintf-test 2> myfile

 $ cat myfile
 Warning: no arguments given.

We can also redirect stderr to stdout by writing "2>&1" (redirect stderr, AKA
file descriptor 2, to wherever stdout is going, AKA file descriptor 1):

 $./fprintf-test hello world 2>&1
 2 arguments given.
 hello
 world

A quirk of shell redirection syntax: when redirecting both stderr and stdout to
a file, order matters. For example, this works as expected:

 $./fprintf-test hello world > myfile 2>&1

 $ cat myfile
 2 arguments given.
 hello
 world

But not this:

 $./fprintf-test hello world 2>&1 > myfile
 2 arguments given.

 $ cat myfile
 hello
 world

By the way, you may recall that when we ask you to append your Valgrind output
to your README, we instruct you to run:

 $ valgrind --leak-check=yes ./myprogram args >> README.txt 2>&1

Hopefully, the ">> README.txt" and "2>&1" parts make a little more sense now.
We need to specify "2>&1" because Valgrind writes its memory leak/error-checking
output to stderr rather than stdout.

