
Lecture 15 - UNIX (last updated: 10/31/22)

An operating system (OS) kernel is the software "between" the computer hardware
and the other software running on it. The following diagram illustrates their
role in modern software system stacks:

 |--|
 | Applications: ls, vim, gcc, bash, firefox, mdb-lookup-cs3157 |
 |-- |
 | Library functions: printf(), strcpy(), malloc() | |
 |--|
 | System calls: write(), open(), fork() |
 |--|
 | OS kernel: Linux, XNU (of macOS), Windows NT |
 |--|
 | Hardware: processor (CPU), memory (RAM), disk, GPU, keyboard |
 |--|

With the help of CPU hardware features such as privileged operations and timers,
modern OS kernels provide each user program with a virtual environment where
they can run as though:

 - they have exclusive use of the CPU
 - they have access to all memory addresses
 - hardware devices are easy to use

Strictly speaking, the kernel is only one part of an OS, which also consists of
userspace libraries and programs (e.g., the GNU part of GNU/Linux). Together,
these provide the infrastructure upon which modern applications are built.

The UNIX operating system, developed at Bell Labs in the 1970s, established the
foundation for most modern OSes. Its derivatives include GNU/Linux, FreeBSD,
and macOS, though its design has also greatly influenced Windows. The UNIX-like
interface common to these operating systems is codified in the POSIX standard.

In the next few lectures, we will describe some notable features of UNIX.
Note that we use the name "UNIX" here to broadly refer to UNIX-like systems,
i.e., those that conform to the POSIX standard.

Users

In UNIX, all users have a unique username and user ID (UID). Users also belong
to one or more groups, identified by a unique group name and group ID (GID).

You can use the "id" command to find your UID and group membership:

 $ id
 uid=1488(jzh2106) gid=1008(student) groups=1008(student)

My username is jzh2106, my UID is 1488, and I am part of the student group.

UNIX systems also have a superuser whose username is root and whose UID is 0.
(Note that root should not be confused with sudo ("SuperUser DO"), which is
a tool that allows system administrators to easily escalate commands to run with
root user privileges.)

File permissions

In UNIX, each file has a user, a group, and a set of permissions (sometimes, the
user is called the file’s "owner", and the permissions are called the "mode").

You see this metadata using ls -l:

 $ ls -l
 -rw------- 1 jzh2106 student 12 Oct 31 01:34 private.txt
 -rw-r--r-- 1 jzh2106 student 17 Oct 31 00:54 public.txt
 -rwxr-x--- 1 jzh2106 student 211 Oct 31 01:03 script.sh
 ^^^^^^^^^^ ^^^^^^^ ^^^^^^^ ^^^^^^^^^
 | | | |
 | | | file name
 | | group
 | user
 permissions

Each permission is written here as a 10-character string, which have the
following meaning (with spaces added for clarity):

 - r w x r - x - - -
 ^ ^^^^^^^^^ ^^^^^^^^^ ^^^^^^^^^
 | | | |
 | | | Other permissions
 | | |
 | | Group permissions
 | |
 | User permissions
 |
 ’-’ if a file, ’d’ if a directory

These are sometimes referred to as "owner," "group," and "world" permissions.

Whether a particular user can access a file is determined by their identity and
group membership, relative to these permissions. The user permissions only
apply when the file owner is trying to access the file; otherwise, the group
permissions apply when the user trying to access the file is a member of the
file’s group; otherwise, the other permissions are used.

For each of the user, group, and other permissions, the three characters (a
triad) indicate whether they can be read (r), written (w), and executed (x);
a ’-’ indicates that the owner/group member/other user does not have that
permission. So, of the files shown above:

 - private.txt can only be read and modified by jzh2106

 - public.txt can be be read by anyone, but can only be modified by jzh2106

 - script.sh can be read and modified by jzh2106, but can be executed by
 jzh2106 as well as anyone in the student group

These restrictions do not apply to the superuser, root. The root user can do
anything they want.

Permissions triads are often expressed as octal numbers, where the read, write,
and execute permissions each correspond to a binary digit with the value 1 when
set and 0 otherwise.

So, the files above have the following permissions, in octal notation:

 - private.txt: 600
 - public.txt: 644
 - script.sh: 750

The three octal digits represent the user, group, and other permissions of each
file.

You can change the permissions, owner, and group of a file (or directory) using
the chmod, chown, chgrp commands, e.g.:

 $ chmod 755 student.sh # Make script.sh executable by everyone

 $ chown root public.txt # Give ownership of public.txt to root

Note that these command-line tools just provide a convenient interface for the
underlying chmod() and chown() system calls.

Be very careful when using these commands/system calls! You can lock yourself
out of your own files (or even your entire system) if you incorrectly configure
permissions; in that case, you will need help from the root user to reclaim
access.

Scripts

Scripts are just human-readable text files with the executable bit set. They
contrast executable binaries, which are not human-readable.

Scripts may be written in any interpreted programming language. For example,
a shell script just contains a list of shell commands that will be invoked when
executed, while a Python script contains Python code.

Scripts should begin with a "shebang" (written #!) to indicate what interpreter
should be used to execute the script. For example, for shell scripts, we can
use the /bin/sh shell program to interpret the script, by writing the following
shebang as the first line:

 #!/bin/sh

Directory permissions

In UNIX, directories have permissions too:

 $ ls -la
 drwxr-xr-x 2 jzh2106 student 5 Oct 31 01:34 .
 drwx--x--- 21 jzh2106 student 43 Oct 31 01:34 ..
 -rw------- 1 jzh2106 student 12 Oct 31 01:34 private.txt
 -rw-r--r-- 1 jzh2106 student 17 Oct 31 00:54 public.txt
 -rwxr-x--- 1 jzh2106 student 211 Oct 31 01:03 script.sh

For directories, the permission bits are interpreted a little differently:

 - the read bit (r) allows users to list the names of the files in the
 directory (but not to access those files’ metadata)

 - the write bit (w), together with the execute bit, allows users to modify
 entries in that directory, such as creating, deleting, and renaming files;
 it is meaningless without the execute bit

 - the execute bit (x) allows users to access the metadata of a directory
 entry, provided they already know the name of the file

setuid, setgid, and sticky bits (optional)
--

UNIX file permissions also include another triad of bits, named the setuid,
setgid, and sticky bits. Though they are used less frequently than the user,
group, and world permission triads, they provide more fine-grained access
control that is very useful for enforcing particular security policies.

The setuid bit allows a user to execute a file as the file owner. For example:

 $ cd ~j-hui/cs3157-pub/bin

 $ ls -l *-cs3157 # only list mdb files related to cs3157
 -rwsr-xr-x 1 j-hui j-hui 17416 Oct 18 15:18 mdb-add-cs3157
 -rw-r--r-- 1 j-hui student 38200 Oct 31 14:44 mdb-cs3157
 -rwxr-xr-x 1 j-hui j-hui 158 Oct 18 15:18 mdb-lookup-cs3157

mdb-cs3157 has 644 permissions, so while anyone can read it, only the owner,
j-hui, can modify it. Although read permissions are sufficient for
mdb-lookup-cs3157, mdb-add-cs3157 needs j-hui’s privileges to add entries to the
database.

Notice that instead of ’rwx’, mdb-add-cs3157’s owner permissions are ’rws’; the
’s’ here indicates that the setuid bit is also set, meaning when other users
execute mdb-add-cs3157, they will do so as j-hui, granting them sufficient
privileges to modify mdb-cs3157. Since mdb-add-cs3157 is carefully written to
only open the mdb-cs3157 file, a malicious user cannot use mdb-add-cs3157’s
setuid bit to misuse j-hui’s privileges.

The setgid bit works similarly for executable files, except it allows the user
to run as though they were a member of the file’s group. When the setgid is set
for directories, it causes files and subdirectories created in that directory to
inherit its group ownership, which is convenient for groups of collaborators who
are all creating files in that directory.

The sticky bit is only useful for directories; it prevents users with write and
execute permissions from modifying or deleting directory contents that they do
not own. This bit is primarily useful for shared directories like /tmp, which
anyone can add files to; the sticky bit, indicated by the ’t’ in the directory
permissions, prevents users from tampering with each other’s files in /tmp:

 $ ls -d -l /tmp # -d prevents ls from listing /tmp’s contents
 drwxrwxrwt 56 root root 28672 Oct 31 16:52 /tmp

File creation permissions and umask (optional)
--

It’s very easy to accidentally grant too many permissions to newly created
files; for example, in C, files created with fopen() are created with 666
permissions by default. At first glance, this seems wildly insecure: other
users would be able to read and write all files created with fopen()!

To prevent lapses in security, UNIX applies a "umask" to newly created files.
A umask is a triple of permissions used as a bitmask on the permissions of
these files. For example, a umask of 022 ensures that files will be created
without group and world write permissions; a umask of 077 ensures that files
will start inaccessible by group members and other users.

You can get and set your umask using your shell’s umask command (which invokes
the umask() system call):

 $ umask # current umask (note: leading 0 is meaningless)
 0077

 $ touch file1 # create a new file with umask 077

 $ umask 022 # set umask to 022

 $ touch file2 # create a new file with umask 022

 $ umask 000 # set umask to 000 (very insecure!)

 $ touch file3 # create a new file with umask 000

 $ ls -l # show file permissions
 -rw------- 1 jzh2106 student 0 Oct 31 17:41 file1
 -rw-r--r-- 1 jzh2106 student 0 Oct 31 17:42 file2
 -rw-rw-rw- 1 jzh2106 student 0 Oct 31 17:45 file3

By default, the touch command tries to create new files with 666 permissions.
With a umask 077, the resulting permission is 666 & ~077 = 600; with umask 022,
666 & ~022 = 600; with umask 000, 666 & ~000 = 666.

Note that umask only governs the permissions that a file is created with; the
permissions can always be set to something else afterwards, e.g., using chmod.

Everything is a file (optional)

A noteworthy feature of UNIX systems is that "everything is a file": aside from
regular files and directories that we expect to reside in a file system, many
things not traditionally considered files also appear to user programs as files
(i.e., they are referred to using file descriptor numbers), including:

 - standard streams (stdin, stdout, stderr)
 - pipes (both named pipes created using mkfifo and anonymous pipes created
 using the pipe() system call)
 - processes (discussed next lecture)
 - hardware devices (e.g., hard drives, displays, printers, hardware timers)
 - kernel options (e.g., low-level networking behavior, logging)

The latter three can be found in the UNIX file hierarchy within the following
special directories:

 - /proc: contains per-process metadata, statistics, and configuration options
 - /dev: contains files representing physical devices
 - /sys: exposes a file system-like to configure the kernel at runtime

Because "everything is (just) a file," we can interact with almost all aspects
of the system through the same interface we use to read and write regular files.

